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ABSTRACT
We obtain estimates for projection bodies of unit balls of certain Banach
spaces. Some of these estimates involve the isoperimetric quotient.

We consider centrally symmetric, convex bodies K in R” with the origin as
center. For such a convex body K we can always find a linear transform T such
that vol,_,(T(K) N H) is essentially the same for all » — 1 dimensional
hyperplanes H,, ¢ is the vector orthogonal to H, [Hen]. If we consider
orthogonal projections P,(K) of K instead of K N H, we cannot find a corre-
sponding transform T'. The most obvious example is the cube or unit ball of /2.
The projection body of a convex body K is the convex body whose support
hyperplane orthogonal to ¢ has distance vol,_(P:(K)) from the origin.
This notion was introduced by Minkowski [BF]. A paper of Bourgain and
Lindenstrauss [BL] contains a survey of projection bodies. We investigate
which are the projection bodies of unit balls of classical normed spaces. For /;,
1 = p < w0, we obtain that the projection body is equivalent to the Euclidean
sphere, i.e. the volume of P;(B;) is essentially independent of the direction .
Since the projection body of the cube or BZ is a multiple of the cube there must
be a drastic change when p tends toward oo. In fact, if the Orlicz function M
satisfies a A,-condition then the projection body of the unit ball B}, of I, is
equivalent to the Euclidean sphere. Therefore we study variations of these
spaces. In the case of [} these variations are simply the Lorentz spaces /;,. We
get projection bodies that are not equivalent to the Euclidean sphere. We apply

t Research supported by NSF Grant DMS 86-02395.
Received October 8, 1988 and in revised form February 16, 1989

43



44 CARSTEN SCHUTT Isr. J. Math.

our results to get estimates for successive quotients of quermassintegrals. We
would like to thank Joram Lindenstrauss, Jerusalem, and Keith Ball, College
Station, for discussions.

0. Preliminaries

In this paper we consider R" equipped with a norm or normed spaces E that
are naturally identified with R”. Therefore it is clear what we understand by
the Lebesgue measure on a normed space. A basis {¢;}/-, is 1-unconditional if
we have forallg =t 1,g,€R,i=1,...,n

n n
2 ae|l =Y gae
j=1 i=1

and 1-symmetric if, in addition,
n n
Y ae|=12 Ap(i) €
i=1 i=1

for all permutations. We denote A(k) = || X, ¢; || . Bg(x) is the unit ball of E
with center x. B, is the unit ball of the Lorentz space /;, with norm

n 1/q
||x||,,,q=(z|xr|«t4'ﬂ-*) . 1sgsp<w

i=1

where x*,i = 1,..., n, is the decreasing rearrangement of |x;|,i=1,..., n.
We denote p’ = p/(p — 1). An Orlicz function M is a convex function from
[0, 0) to R* with M(¢) = 0 if and only if = 0. B}, is the unit ball of the Orlicz
space [}, . The norm satisfies

I xllx=1 ifand onlyif ¥ M(|x;])=1,

i=1
M* is the dual function. B} is the Euclidean unit ball and o the Haar measure
on its boundary dB;. u is usually the surface measure on the boundary dK of a
convex body K, the restriction of the n — 1 dimensional Hausdorff measure to
0K [Fe]. We use the fact that the surface area of a convex body K that is
contained in a convex body C is smaller than the surface area of C. The
exterior normal at a point x €9K is denoted by N(x). N(x) exists almost
everywhere.
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1. The isoperimetric quotient
The isoperimetric quotient iq(C) of a convex body C in R" [Had, p. 269] is

vol, _,(8C)

i(C) = .
AO= Loy

THEOREM 1.1. Let{e;}}-, beabasis of E,T C {e |s,- =t1,i=1,...,n}
and 11 a subset of the set of permutations of {1, ..., n} such that

(1.1) Y ael = | X &ape foralleel, n€ll and a,ER.
i=1 i=1

Assume that
1 v n

(1.2) —Ja),=Ave| X a&|=cllal, foralla€ER
Cy e€l li=1

and that for every i, k with 1 =i, k = n there is a n €Il so that n(i) =k and
#{n | n(i) = k} does not depend on i and k. Then we have

vol, _(P«Bg)) iq(Bg)
o ol (Po(Be) feic Jn

REMARK 1.2. For unit balls B; of spaces E that have a 1-symmetric basis
we get with an absolute constant C

ia(Bs) ___ vol,_(Pu(Bs)) _ ia(Bs)
Jn S ol BB

The left-hand inequality follows from Cauchy’s surface formula and a result of
Hensley. Indeed, by Cauchy’s surface formula we get

vol,_,(8C) = vol,_,(Bf ) ~! fa o VOl (P (&)

(1.3)

(1.4) c!

A

l,_(0B7
< YO 10BD) o vol,_ ,(P(C))
vol, _(Bf™") ¢
and by a result of Hensley [Hen] and the symmetricity of the basis we have
vol,(C)®~"" = ¢vol, _(C N H,) = cvol,_(P.(C));

H, denotes the hyperplane orthogonal to e,. The two inequalities imply the
left-hand inequality of Remark 1.2,
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Theorem 1.1 applies in particular to the following class of spaces. We say
that a finite-dimensional Banach space is a symmetric matrix space if thereis a
basis {e;}/~%, such that we have for all signs ¢, 6, all permutations r, g, and all
a;ER

nm

2 a,-je,~
i,j=1

n,m
= | ¥ &6;ayne;) €y
i,j=1

Examples are the Schatten classes C; and tensor products of 1-symmetric
spaces.
The volume ratio of a convex body C C R is

vr(C) = inf (ﬂ@) i

ecc \vol,(e)

where the infimum is taken over all ellipsoids ¢ that are contained in C. The
volume ratio vr(E) of a space E is that of its unit ball.

PRrOPOSITION 1.3. Let C be a convex body in R” such that the Euclidean
sphere B} is the ellipsoid of maximal volume contained in C. Then we have

iq(C) = vr(C)n vol,(B}) " = c/n vi(C)
where c is an absolute constant.

It was shown in [Schii,, ST that vr(C?) for 1 = p =2 and vr(* &, I) for
1 = p =2 are uniformly bounded. Therefore Theorem 1.1 and Proposition 1.3
give that for these spaces vol,_,(P;(Bg)) is essentially not dependent on the
direction &. This can also be obtained by arguments of Ball and Bourgain
[Ball). Later we shall see that the isoperimetric quotient of the unit balls of [},
2 < p < w, are uniformly bounded although the volume ratios are not.

LemMa 1.4 [Had, pp. 161-163). Let C be a compact subset of R" and
X1 « - - » X, Orthonormal vectors. Then we have

" 1n—1)
vol,(C) = | II vol,_ (P, (C)
i=1

PrOOF OF THEOREM 1.1. Let u be the surface measure on 0Bz and N(x) the
normal at x.
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1
vol, - (Pe(Bs) = L (& N ()

1
= E J;BE “}é’re [{(&;&)=1, N(¥)) |du(y).

By the hypothesis we get

Ol (BN Z 5~ [, (2 HENDNDP)” duty)

Fa=]

2c, (E &1

1
= ; VOI,,‘I Pe. (BE))’

1

fa,,s IN(y)(i)|d#(y)|2>uz

The last equality holds because Iwe have for all z €11

n
Y ae

i=1

(i) €

im]

and consequently vol, _ (P, (B:)) = vol,_(P,(Bg)) foralli=1,...,n
Thus, for all directions £ we have

1
(1.5) c— vol,_ (P, (Bg)) = vol, _ (P:(Bx)).
1
In a similar way we obtain that we have for all n €I1
¢, 172
vol, _(P«(Bg)) = Py f ( 2 1&aN(Y)(E) I2) du(y)-

Therefore

vol,_|(Pe(Bg)) =~ (Avr? fE( 3 |f,.(,)N(y)(z)|2) dﬂ(.}’)r)m

i=1

=2 [ (A3 £oNOXDPE)” duty)

i=1

- %ﬁ Lpg ( ii INOXD) |2) § %)
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1
=2 vol,_,(3Bp).

2. /n
Combining this inequality and (1.5) we get

vol,_(P(Bg)) _cicy 1 _vol,_,(3B;)

1.6 max = _—
(1) tn vol,_(Py(Be) ~ 2 /nvol,_ (P.(Bs))
Now we apply Lemma 1.4, O

PROOF OF PROPOSITION 1.3. Let x €E4C and N(x) the normal of dC at x.
Since B7 C C we have

(x, N(x)) = 1.

Therefore we get

1 1
vol,(C) =~ f (5 NGy 2 vol, (60

this implies

i VOl,_@C) .
nvol,(C)'" = —vol,,(C) T iq(C),

nvol,(B)V*vr(C) 2 iq(C). O

Let x ER” and x* the decreasing rearrangement of | x;|,|X:1,| X3, . .-, | X%, |-
We denote by

max,(x) = x¥.
LeEMMA 1.5. Let {¢}]., be a 1-symmetric basis of E. Let
a=vol,_(@8¢) " [ max(N(y)du(y)
12
b= (voh, 108" [ 1max V()P

and let M, and M, be Orlicz functions that satisfy
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i G)s( £ a) £ a1 5 rar) e (55),

I=1,...,n.

o ()= (£) [ (3, ) ()

Then we have for all directions &, || € ||, =1,

1 1
6~ X a;vol,_(3Bg) | & lag, = vOl,— ((Pe(Bg)) = ¢, — 2 b;vol,_,(0Bg) || & |2,

Ni=1 ni=
where ¢, and c, are absolute constants.

LEMMA 1.6 [KS,KS;]. Leta,Zza,= =a,>0withZ'., a,=n. Then
there is an Orlicz function M with

§M*“<rll) le a; +<1 Z |a,-|2)“2}§2M*‘1(1—:1) for1=l=n

i=1 i=l+1

such that
n 2 12
¢ ||x||M§A”ve<Z |x,,(,-)a,-|> =o|lx |y
i=1

where ¢, and c, are absolute constants.

PrOOF OF LEMMA 1.5. In the proof of Theorem 1.1 we have shown

1-
vol,_(P(Be) =3 || 5(2 Ié,N(sz)P) du(y)

=]

(1.4) 2 vol, _(P«(Bg)).

Because we have a symmetric basis we get

2/ vol, (BB zAve [ (2 1¢,<,,N(y>((z))|2) du()

=]

n 172
= Ave J;B ( 2 1w max,-(N(y))Iz) du(y)

x Q=]

= AVC( 2 |€!(l)|2

i=]

J,, max@onau| )
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n ) 172
=vol,_(3Bg) ANVC < Z |fn(i) a;| )
i=1

Now we can apply Lemma 1.6 and we obtain the left-hand inequality of
Lemma 1.5. The right-hand inequality is obtained in the same way. By (1.4)
and the symmetricity we have

vol, _(P:(Bg))

ssave [ (5 160N0I0R) "

i=]

B 1 n N ) l/2d
_EAVC J;as( 2 | &rp max,(N(y))| ) u(y)

® i=1

1 n 12
=< 5 vol,_,(dB;) Ave <vol,,_1(aBE)" fa . Y | &) max; N(y)lzdu(y))
n Ej=]

1
=5vol,, 1(8Bg) Ave( 2 &bl )

i=1]

Again, we apply Lemma 1.6. O

2. Projection bodies of Lorentz spaces

By Lemma 1.6, there is for each sequence g, = a, = - - - Z a, > 0 an Orlicz
function M so that

we()s(Sa) {3+ (1,3, 108)

<2M*‘<l+1), l=1,...,n.
n

(2.1)

We say that such an Orlicz function is associated to the sequence 4.

THEOREM 2.1. (i) Let 1<q<oo and d>0. Then there are constants
¢, ;>0 so that we have for all sequences 1 =a,=Za,= -+ = a, >0 with
sk a;=dacforallk=1,...,nandall directions &, || & ||,=1,

VOIn—l(PC(B:,q» 1 " a "l

(K4
vol,_,@B2,) = ‘nal, ¥

1
a-c@= ¢ =
n
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where M is associated to a and

C(a)=(§l a:)uq( Y af

I<nle

Y @

k = nfin(n/l)

(1 —q)/q) -1/2

(ii) There are constants c,,¢,>0 so that we have for all sequences 1 =
QzZaz---2a,>0

1 |a vol, _(Pe(Bz1)) _ 1 ]a
.1 al: 1E [ = (PelBe) L lal:
" a "2 n—l(aBa,l) “ "2

where M is associated to a.

IS Hae

If we put a;, =i%?"! we get as an immediate consequence the following
corollary.

COROLLARY 2.2. Let(€ER”, |¢|.=1.
() 2<p<w,
VOln WP c(B: 1))

c—ln—l/p’ L=
O L e

n= N &,
(i) I<g<p/2<ow,

_ _ _ vol, _(Pe(B7,))
e, \In(n) |G- Vepa-ovey g o< T]l—é_gwf_q)
n—1 p.q
26 n ¢ | pio-a-
(ii1)) max(1, p/2)<q = p < .
1 _vol,_ {(Pe(By, q)) 1
e f vol,_,(3B%,) ”[

Corollary 2.2 shows in particular that the projection bodies of the unit balls
of [; are equivalent to the Euclidean spheres. We have better estimates for [} .

REMARK 2.3.
(@ 1=p=n,

_\/— ol,_1(dB;) _ o,

n l(B" 1)

where c is a universal constant.
(ii) Let M be an Orlicz function that satisfies a A,-condition. Then we have
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_(1; \/"l VOln l(aBM) \/-

n I(B
where ¢ depends only on the constant appearing in the A,-condition.

To show the right-hand inequality of Remark 2.3(i) we estimate
n 172
vol, @8 =2 [ x-e( £ xpe) " ax
B! i=1

with x, = (1 — 2=} x; |P)V”. The left-hand inequality follows from
173
[, If(x)lzdu(x)é( [ iswtae) ([, 1)
B, By By

with f{x) =x}"?(Z,|x;|**~3)"? and pu the normalized Lebesgue measure.
In order to prove part (ii) of Remark 2.3 we have to use inequalities of the
type
M(6t) = "M(t).
This inequality is true provided M satisfies a A,-condition. Besides this, the
arguments are the same as for Theorem 2.1.

LEMMA 2.4 [HLP pp. 45-49]). Let x,=2x,=---2x,20 and y,=
V2= o+ 2y, =0 such that

n n

2 X= Elyi’

i=1 i=

k k k=1,...,n,
A Y v

i=1 i=1
then there are numbers d, = 0 with Z,d, = 1 and permutations =, so that

yk=2drxz,(k), k=1,...,n

LEMMA 2.5. Let {z&z - 26,>0and mzm= -+ - 20,>0 with
Nél2=1nll.=1and

Nl = &lis, i=1,...,n—1
Then we have for all zER"

n 12 n 12
Ave ( ) | Zay Mi |2> = Ave ( ) | Zxy & |2> .
x i=1 x

i=l1
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ProOF. Weputx; =& andy, =nfori =1,..., n. Now we verify that the
hypothesis of Lemma 2.4 is satisfied. Since #;/n;,, = &/& ., there must be
k,EN so that

rh§¢,‘ fori=1,...,k0,
n>& fori=ky+1,...,n
Clearly it follows that

& fork=1,...,k,

z =Y fork=k+1,...,n

Since we assume that 7., & =2, n? wegetalsofork =k, +1,...,n
k

X éZ»f’

i=1 i=1

Therefore we can apply Lemma 2.4. There are numbers d, = 0 with £, d, = 1
and permutations g, so that

’1k 2 d, rXa,(k) = Z d, 53,(1:) .

Therefore we get by using the inverse triangle inequality for p =4

{ave( § 1zwer) "} -2 {ave( £ 1zotor)

={ave(24 % 1zwtor) "}

r i=1

n 1/2} 2
={AV°< z |Zx(i)'li|2) } . O
L =1

LEMMA 2.6. (i) Let l=gq<xo and l=a,Za,= --- =a,>0 such that
Sk a;Sckacforallk=1,...,n. Then we have forallk,1 <k < nleand all
a>0

—a

f | max(x)|*du(x) = ¢, , vol,_(0B%,)
3B’

Y e

i Snfin(n/k)

where c,, does not depend on the dimension n.
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(i) Let l=g<candl=a,Z2a,= -+- = a, >0 such that =¥, a; =< cka,
Jorallk=1,...,n. Then there is a constant d = d(a, g, c) so that

1
f | MK,y (x) (%) Z = vol, _(3Bz,,)
3B, d

n
Ye
i=1

One can actually prove that (ii) holds for a space with a symmetric basis. In
order to show Lemma 2.6 we need the following lemma.

LEMMA 2.7. Let 1<gq<w and l=a,Za,=---=Za,>0 so that
sk a;=dka.,k=1,...,n. Then we have forallr,1=r =n,
k

" 21l Mk
(i) vol,_ l{xeaB,,q |maxk(x)>l( )} <k) 1 7

(n=1yq
vol,_(0B;,)

fort=k=r,

(ii) vol,_, {x €08}, | max;(x) = TIS} 0 fork>r.

ProoF. (ii) is obvious. We use that A(r) <A(r + 1).
We show (i). We prove first that

B!, N {XxER"|x,,..., % = 2A(r)}

‘ ‘“’Ql(r),z e,) {xER”|x1,...,xkzI:r—)}.

We have for x in the left-hand set of (2.2)

(2:2)

1 1
X ——=— =1,...,k
A(r)  A(r)
Since || x ||, =1 we also have that
”—(x ——L X ! s X, x)
1 l(r)’“.’ k ),() k+1y ¢+ s

satisfies || £ ||,, = 1. We claim that the first k coordinates of X are among the r
greatest coordinates of X, i.e. if ¥* denotes the decreasing rearrangement of X
thereisaset I = {i),..., i} C{1,...,r} so that

(2.3) =x— VAP, Jj=1,...,k

Indeed, if one of those coordinates would not be among the r greatest then
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more than r coordinates of X are greater than 1/A(r) which contradicts the fact
that || X ||,, = 1. Therefore we get

1z 2 axt1z a2 + X 4| X + VA1

i=1 L34 i€l

2 Y a2+ L a1 + T a | VA

i¢l i€l i€l
Thus we get
1-Ya|l/A)I z X a|
i€l i=1
or
1 - ka’ Vg k |va
lx——=fa] ~1fhas|i- s|i-2
Ar)i=1 lag Zioa dr

Now we show that (2.2) implies Lemma 2.7(i). (2.2) implies that we have for all
signs €, ..., &

Br, N{XER" |exy, . . ., &x; = 2/A(r)}

C‘l—k
dr

I 1 &
qB,;‘,q (A—(S D s,-e,-) N{xER" | 81Xy, . - -5 8 X 2 1/A(F)}
rji=1
or, after a shift by (1/A(r))Z%., ge;,

1 k
B:, ( ——,1( ) > a,e,-> N {xER" Ial Xpy oo &X Z VA(N)}
Ry

i==]
k |Ve
- ‘1—;. B, N{xER" |ex, ..., &x =0}
r

and therefore

2 k
B;, ( -—23 sie,-> N {x€eR" Is,xl, s & 20}
A(r)i-l

(2.49)
k |
C ‘1 —;‘ B, n{xER” |81x,,...,akxk§0}.
r

Since /], has a 1-unconditional basis we have that
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k
U {ng(-i ) 8,-e,~)n {xER" lslxl,...,skxk;O}}
¢ ’ A(r)i=1

is a convex set that is contained in |1 — k/dr |"BZ . Thus we get

vol, _, {GB;’J N U xER|ex, ..., 6x 2 2/,1(r)}}

2 k
= vol,,_,a{ U {B;',,, (——— > a,~e,~) N{xER" | E1Xpy - vy X 2 O}}}
[ A(r) i=1
=< |1—k/dr|"~Yavol,_,(3B},).
This implies

vol,_,{x €34B;, I max,(x) = 2/A(r)} = (Z) |1 — k/dr|"~Yvol, _,(dB;,).0

PrROOF OF LEMMA 2.6. (i) We show the inequality for k with 1 =k = n/e.
We fix k and r, with k =< r, = n. We specify later what we choose for r,. By
(7) =< (en/k)* and Lemma 2.7 we get

vol, (0B, [ Imax,e)duc)

—vol,_,(3B",)"" f ® vol,_{ | max,(x)|* = t}dt
0

=1 k n— 1)
SA)7+ 3 200 (Z) 1—d(r+1)( v
kn! — )k

<A(r)+2¢ <5k'1) S M) exp ( - ——;Z ” +)1)) .

Because A(r) =< 2(ri/r)A(r) for r = r, we get

o l14 S en 1) b))
=2°4(re) {l+r§kexp<kln<k)+aln<2r doe+)]

Now we choose r, = ¢’n/In(n/k) and observe that, if k = n/eand k = ¢'n,

Te) _ ,__ 1 n n
ln<r) ln(c rln(n/k)>éln<c k)éln(k)’
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(n— Dk >L(n — DkIn(n/k) o1 kln (n)

qgd(r+1)" qd c’n = 2qdc’ K

Therefore, if we choose ¢’ sufficiently small, i.e.

Z4+aln2+a,

2qdc’
we obtain

vol,_,(8B;,) ! fa . | max, |*du(x)

o 5 (w2

r=k

e , n 2 -2k
=2740) {1 te In(n/k) (k) }

< c”A(r) ™

where ¢” depends on ¢, d, and « but not on n.
(ii) We show that

(2.5) u{x EOBL, | max (x)Z A(n) "'} = d™!

from which (ii) follows immediately. We have

vol,_,(dB,) = fa o 1% llaqdn(x)

§< i aklmaxk(x)l"du> "

0B k=1

_S.( 2 J; . Imaxk(x)l"du)w

k<nld a4

+( 5 af imaxcordd)”.

k>nid aq

By (i) the first summand is less than
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c,,vol,,_l(aB,;',q)< 3 ak( » ai)—l)x/q

k=nid i Znfin(n/k)

(2.6)

1/
écqvol,,_,(aB{,',q)< 5 g 2001 )".

k=nid n Quanicy

By the hypothesis =*_, a; < cka,, k=1,..., n, we get that g, <3Dap,, k <
n/Dif D = 2 exp(2c?) (compare [Schii,], Lemma 4.7). By this and by choosing
d large enough the last expression can be bound by 4 vol, _ (3B, ). Please note
that 4 only depends on ¢ and q. We get

lq
@7 5voln_1<aB:,,,)§< ) akﬁ, 1maxk(x)|ﬂdu)' :

kzn/d Baq

From this and Lemma 2.7(ii) the inequality (2.5) follows with a new constant d
that depends only on ¢ and g. O

PrOOF OF THEOREM 2.1. As in the proof of Theorem 1.1 we obtain

1 p . <1 n 12 1/2d
vl 2@z =5 [, ave( £ 1oNoX0R)” )

(2'8) =./2 VOI,, _ 1(P{(B:,q ))'

Forall yER*, y,>y,> -+ >y, >0 we have

Ay ! "
2.9 N =< a ) .
29) ) Crilaly 1 )i

(2.9) implies

NOX) 4
NOYi+1)~ ayy

We can apply Lemma 2.5 to N(y) and a/ || a ||,. We get

n 172
vol,_ (P«(B;,)) = lals! J; - A:’e( Y &pa |2) du(y).

i=1

We apply Lemma 1.6 and obtain the right-hand inequality of Theorem 2.1.
Now we prove the left-hand inequality. We want to apply Lemma 1.5. It
suffices to get estimates from below for
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vol,_,(8B,) ! fa . max;(N(y))du(y)

) -1
= vol, @8, | SAman )

aB" n 172 dﬂ(y)
“(kE | a(max(y))? ! IZ)
=1

2
(voln- 1(8B;,) ! fw |a;(max,(y))?~ | du(y))

iV

= n 172 *
vol,_(dB;,)"! Y lag(max ()~ 2} du(y)
% \k=1

By Lemma 2.6 we get for 1 <i =n/d
. 1-¢
=¢ a4 (1) 72
(.2 1o PIaGrnEu )

k=nle

Since A(k) = (Zk_, a,)9 we get

vol, _,(dB?,)~! fa " max,(N(y))du(y)

n (1—q)q
a,-< 2 ak>
= = C—2gya\172
( 2 la l’( X az) >

k<Znle 1 Zn/In(n/k)

(ii) is easier to prove since N(y)=a/ || a ||,. O

3. Successive quotients of quermassintegrals

Let C be a convex body. We denote by W;(C), i =0,..., n, the quermass-
integrals [Had]. The Aleksandrov-~Fenchel inequalities assure that the
sequence of successive quotients of quermassintegrals is monotone. We show
here that for certain convex bodies it is essentially constant (Corollary 3.4).

The following proposition is a combination of two known results.

PrOPOSITION 3.1. Let E be the R" equipped with a norm || ||gz. Then we
have

VOln(BE) lin _ WO(BE) Wn—l(BE) _
"B WGBS TWaBy  Juw 17 lmd0).
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LeMMA 3.2 (Aleksandrov-Fenchel) [Had, p. 202). For all convex bodies
K C R" we have

WKz W, (KW, _(K), i=1,...,n—1
LemMA 3.3 [Had, p. 212]). For all convex bodies K C R", n > 1, we have

W, _(K) = vol,(,) f  b(K, x)do(x)

where
b(K, x)=inf{t | (x,u) <t for all uEK} — sup{t | (x, u) = t for all u EK}.

ProoF oF ProposiTioN 3.1. Since Wy (Bg)=vol,(Bz) and W(Bg)=
(1/n)vol, _(0Bg) we get

WoBs) _ volu(Br) _  vol(Bp)™"
W\(Bx) vol,_(0Bg) iq(Bg) .

The right-hand equality follows from Lemma 3.3 and the observation that
b(Bg, x)=2| x || g+ The rest follows from Lemma 3.2. a

COROLLARY 3.4. Let max(l, p/2)<g = p < . Then we have

L 1/2—1/p<W°( ") ..<ﬁ“(_Bl”"q_).<c n\2-Up

cp,q Wl(Bp,q) - Wn(B:,q) -

Proofr. The left-hand inequality follows from Proposition 3.1, Corollary
2.2(iii) and Lemma 1.2 in [Schi,]. Since we have || x ||,, Z || x ||, we get by
dualization

W . B" , Up
W, Bpy) | x ||, do(x) < ( f [ da(x))
Wn(B:,ﬂ) 0 o0
/p’
— <nf |x1 |prda(x)) p éc‘;nllz—llp' D
on,
REMARK 3.5.

(i) [Had, p. 216) W(B2)=2"""vol;(Q;),i=1,...,n.
(ii) WoB})=(1/\/n)W\(BY).
(i) (1/c)\/In(n)/n = W,_ (B} W,(B}) = c/In(n)/n.

ProoF. (ii) We have
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2" 1 2% /n

(iii) By Proposition 3.1 we have

W,_(Bf
_"L(_l) = f " X |I°°do-(x)_
W,(B7) a0,
A lower bound for this integral was given in [FLM). The same method gives
also an upper bound. Also, Lemma 2.6 gives the upper bound. O
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