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ABSTRACT 

We obtain estimates for projection bodies of unit bails of certain Banach 
spaces. Some of these estimates involve the isoperimetric quotient. 

We consider centrally symmetric, convex bodies K in R ~ with the origin as 
center. For such a convex body K we can always find a linear transform T such 
that vol~_~(T(K)t3 He) is essentially the same for all n -  1 dimensional 
hyperplanes He, ~ is the vector orthogonal to He [Hen]. If we consider 
orthogonal projections Pc(K) of K instead of K ~ He we cannot find a corre- 
sponding transform T. The most obvious example is the cube or unit ball of/~. 
The projection body of a convex body K is the convex body whose support 
hyperplane orthogonal to ~ has distance vol~_l(P¢(K)) from the origin. 
This notion was introduced by Minkowski [BF]. A paper of Bourgain and 
Lindenstrauss [BL] contains a survey of projection bodies. We investigate 
which are the projection bodies of unit balls of classical normed spaces. For l~, 
1 < p < oo, we obtain that the projection body is equivalent to the Euclidean 
sphere, i.e. the volume of P¢(B~) is essentially independent of the direction ~. 
Since the projection body of the cube or B~ is a multiple of the cube there must 
be a drastic change when p tends toward oo. In fact, if the Orlicz function M 
satisfies a A2-condition then the projection body of the unit ball B~ of l~t is 
equivalent to the Euclidean sphere. Therefore we study variations of these 
spaces. In the case of l 7 these variations are simply the Lorentz spaces l~,q. We 
get projection bodies that are not equivalent to the Euclidean sphere. We apply 
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our results to get estimates for successive quotients of  quermassintegrals. We 
would like to thank Joram Lindenstrauss, Jerusalem, and Keith Ball, College 

Station, for discussions. 

O. Preliminaries 

In this paper we consider R" equipped with a norm or normed spaces E that 

are naturally identified with R". Therefore it is clear what we understand by 

the Lebesgue measure on a normed space. A basis {e~ },."_ l is 1-unconditional if  
we have for all e~ = + 1, a~ ~ R, i = 1 , . . . ,  n 

aiei = ~ e, ia ie i  
i f f i l  i - - I  

and 1-symmetric if, in addition, 

i f f i l  i - - I  

for all permutations. We denote A(k) = II zk- ~ ei I]. Be(x) is the unit ball of  E 
with center x.  BT,,q is the unit ball of  the Lorentz space l~,q with norm 

)" 
II x II,.q = Ix?l , 

i I 

l < q < p < o o  

where x*, i = 1 . . . . .  n, is the decreasing rearrangement of  I xi [, i = 1 , . . . ,  n. 

We denote p ' =  p/ (p  - 1). An Orlicz function M is a convex function from 

[0, oo) to R + with M(t)  = 0 if and only i f t  = 0. Bb is the unit ball of  the Orlicz 
space lb. The norm satisfies 

n 

II x = 1 if and only if ~ M(Ixi  I) = 1, 
i - I  

/14" is the dual function. Bg is the Euclidean unit ball and a the Haar measure 

on its boundary OBL Iz is usually the surface measure on the boundary OKof a 

convex body K, the restriction of  the n - 1 dimensional Hausdorffmeasure to 

OK [Fe]. We use the fact that the surface area of a convex body K that is 

contained in a convex body C is smaller than the surface area of C. The 
exterior normal at a point x ~ O K  is denoted by N(x). N(x)  exists almost 
everywhere. 
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1. The isoperimetric quotient 

The isoperimetric quotient iq(C) of  a convex body C in R ~ [Had, p. 269] is 

vol. _ 1(0C) 
iq(C) = 

vol .(C)( .-  w. • 

THEOREM 1.1. Let {ei }P- ~ be a basis of  E,  F c_ {e 18~ = +_ 1, i ffi 1 . . . .  , n } 
and II a subset of  the set o f  permutations of{  1 . . . . .  n } such that 

(1.1) ~aie,_ = i-,Y" eia.,,,ei :oralle r, , E l i  and a i~R .  

Assume that 

I~l  a~e~ (1.2) -1 Ila 112---<Ave =<c2lla 112 f orallaER  
Cl eEF i 

and that for every i, k with 1 < i, k <= n there is a rc~l i  so that rt(i) = k and 
# { n  I rt(i) = k} does not depend on i and k. Then we have 

(1.3) 
vol._ I ( P ~ ( B E ) )  .~ , iq(B~) 

max ~ClC2 

REMARK 1.2. For unit balls BE of  spaces E that have a 1-symmetric basis 

we get with an absolute constant C 

vol._ t(P~(BE)) c iq(Be)  (1.4) C_ t iq(BE) < max _< . 
X//n ~,~ vOln_I(Pn(BF.))- x//-n 

The left-hand inequality follows from Cauchy's surface formula and a result of  

Hensley. Indeed, by Cauchy's surface formula we get 

voln _ l(OC) ---- vOln -l(B~ - l) - l f a ~  voln _ l(P~(C))dlt(~) 

< voln_ I(0B~) 
max vol._ ~(P¢(C)) 

- -  v o l . _  I ( B ~ -  I) ¢ 

and by a result of  Hensley [Hen] and the symmetricity of  the basis we have 

vol.(C)(. -l)/. > c vol._ I(C tq He) ffi c vol._ I(P,,(C)); 

He, denotes the hyperplane orthogonal to el. The two inequalities imply the 

left-hand inequality of Remark 1.2. 
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Theorem I. I applies in particular to the following class of spaces. We say 

that a finite-dimensional Banach space is a symmetric matrix space if there is a 

,m such that we have for all signs e, 0, all permutations n, a, and all basis {e# }/j_ i 

a# E R  

I n~ m aijeij = ~m eiOja,(i),(J)eu . 
i , j  - 1 i , j  = 1 

Examples are the Schatten classes C~ and tensor products of 1-symmetric 
spaces. 

The volume ratio of a convex body C _c R ~ is 

vr(C) = inf (vol~(C))l/~ 
~cc \ voln(e) / 

where the infimum is taken over all ellipsoids e that are contained in C. The' 
volume ratio vr(E) of a space E is that of its unit ball. 

PROPOSITION 1.3. Let C be a convex body in R" such that the Euclidean 
sphere B[ is the ellipsoid of  maximal volume contained in C. Then we have 

iq(C) "~ vr(C)n voln (Be)l/n ~ C %//r-~ vr(C) 

where c is an absolute constant. 

It was shown in [Schfh, ST] that vr(C~) for 1 =< p < 2 and vr(l~ ~ ) ,  1~) for 
1 ~ p _-< 2 are uniformly bounded. Therefore Theorem I. 1 and Proposition 1.3 
give that for these spaces vol,_ ~(P~(Br)) is essentially not dependent on the 
direction ~. This can also be obtained by arguments of Ball and Bourgain 
[Ball]. Later we shall see that the isoperimetric quotient of the unit balls of l~, 
2 < p < oo, are uniformly bounded although the volume ratios are not. 

LEMMA 1.4 [Had, pp. 161-163]. Let C be a compact subset o f  R" and 

x~, . . . , x~ orthonormal vectors. Then we have 

1 1 / ( n  - 1)  

voln(C) < fi voln_l(Px,(C)) 
i-1 

PROOF OF THEOREM 1. I. Let/~ be the surface measure on OBe and N(x)  the 
normal at x. 
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1 fa I (¢, N(y)) [ d # ( y )  vol,,_,(P¢(Be)) = ~ ,. B, 

1 : o  Ave I((e,¢~)L,, N(y))Id/z(y). 
2 B~ .er 

By the hypothesis we get 

voln_I(P¢(BE))> I-~-L ( ~, ]~iN(y)(i),2)VZdlt(y) 
= 2Ca ~ - ,  

=> 1 (  ~ i~il2 Ira IN(y)(i)ld~(y)2),,2 
2c, i -- 1 B. 

1 
= - vol~_ ,(Pe, (Be)). 

Cl 

The last equality holds because ~ve have for all rt E H 

Y~ ai ei = an(i) ei 
i- i-, 

and consequently voln_ l(Pe, (Be)) = voln_ l(Pe,(Be)) for all i = 1 , . . . ,  n. 
Thus, for all directions ¢ we have 

1 
(1.5) - vol._,(e,,(B~)) z vol._,(e¢(B~)). 

Cl 

In a similar way we obtain that we have for all n E H 

VOln-l(e¢(nE))<2 LBE( ~ ]~x(i)N(y)(i)12) 1/2 = d#(y). 
i--I 

Therefore 

-<~L2 n,\(Ave,,en i-l~ l~"(i)N(y)(i)12) l/2dlz(y) 

2 x/~ i-i 
\ 112 IN(y)(i)l 2) dlz(y) 
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¢2 1 
= ~ - - ~  vol,_,(OBz). 

Combin ing  this inequali ty and  (1.5) we get 

v ° l n - l ( P ~  ( B E ) )  _ - -  (1.6) max  _ < c:2 
~.~ vOln_I(P,(BE) ) 2 

Now we apply L e m m a  1.4. 

PROOF OF PROPOSITION 1.3. 

Since B~ _ C we have 

1 vol._ I(OBE) 
X//-~ voln -,(Pe, ( B E ) )  " 

[] 

Let x EOC and  N(x) the normal  of OC at x .  

(x, N(x)) >-_ 1. 

vol ,_ l (0C)  
n vo l , (C)  l" >_ -- iq(C), 

vo l , (C) ( , - iv ,  

n vol,(B~)1/"vr(C) > iq(C). [] 

Let x ~ R" and  x* the decreasing rear rangement  of  I xl l, I Xz l, I x3 l, • • •, I x ,  I. 
We denote  by 

maxk(x) = x~. 

LEMMA 1.5. Let {e~}pffi, be a 1-symmetric basis of  E. Let 

= vol ,  _ t (OBE) - ' f~n. maxi (N(y) )dg  ( y ) ai 

and let M~ and M2 be Orlicz functions that satisfy 

this implies  

Therefore  we get 

vo l , (C)  = - 1 : 0  (x,N(x))dl~ > 1-vol ,_ , (0C);  
?/ c ?Z 
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~M *- t  < ~ ai a~ + l Y. 
i - - I  L i - - I  i - - l + l  

i1 

b~ + (',),+l 
l = I  . . . .  , n .  

Then we have for  all directions ~, II ~ 112 = 1, 

1 1 
cl - ~ ai vol .- l(OBe) II ~ I1~,, < v°ln-l(P¢(Be)) < c2 - ~, b, v°ln-l(OBz) II ~ 11~2 ni-l nil1 

where c~ and c2 are absolute constants. 

LEMMA 1.6 [KS,  KS2]. Let  a~ >-_ as > • . .  >-_ a, > 0 with Zp_~ a~ = n. Then 

there is an Orlicz function M with 

~M *- l  < a i +  1 la i l  2 < 2 M  *-l  f o r l < l < n  
n [ i - i  i - I + l  

such that 

c, IIx II~--< Ave Ix~toa, I 2 <ffic2llx I1~ 
i - l  

where c~ and c2 are absolute constants. 

PROOF OF LEMMA 1.5. In the proof of Theorem I. I we have shown 

(1.4) 

1- \u2 

=< x/~ vol._ I(P¢(BE)) • 

Because we have a symmetric basis we get 

2x/~voln_I(P¢(BE)) ~ Ave :a,. (i_l ~ ] "(i)N(Y)((i))[2) 1,2 d]'l`,, 

L 2),,2 > Ave I ~¢,)12 max,(N(y))d#(y 
x \ i - - I  
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= voln_~(OBF,) Ave (  ~l l~n(oail2)l/2. 

Now we can apply Lemma 1.6 and we obtain the left-hand inequality of 
Lemma 1.5. The fight-hand inequality is obtained in the same way. By (1.4) 
and the symmetricity we have 

VOln-I(P¢(BE)) 

1 ) _--< Ave I~t,)N(y)(i) 12\ dlz(y) 
1/2 

2 • • i 1 

1 
=-Ave2 ~ ,-l~ I~t°maxi(N(y))12) l/2dlt(y) 

< voln_l(OBe)Ave vOln_l(OBr.) -l I~n(omaxiN(y)12dlt(y) 
Bei=l 

/ ),2 
= vol._ I(OBE) Ave Y, [ ~ti) bi 12 

Jt \ i - - I  

Again, we apply Lemma 1.6. D 

2. Projection bodies of Lorentz spaces 

By Lemma 1.6, there is for each sequence a~ > a2 > • • • > a. > 0 an Odicz 
function M so that 

(2.1) 

~M*-' < ~ a  ai + 1 ~ ,  1(//12) 1/2} 
i - - I  Z i - - I  i--l+l 

l = l , . . . , n .  

We say that such an Orlicz function is associated to the sequence a. 

THEOREM 2.1. (i) Let 1 < q < oo and d > O. Then there are constants 
c~, c2 > 0 so that we have for all sequences 1 = a, >= a2 >= • • • >= a. > 0 with 
xk_~ a~ <= dakfor all k = 1 , . . . ,  n and all directions ~, II ~ 112 -- 1, 

cl .c(a) 1_ II ~ I1~ =< vol._~(e¢(Bg,,)) 
n v o 1  n _ i(19en,q ) 

1 Ila Ill 
n II a 112 
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where M is associated to a and  

c (a )=(  ~al)l/q(l<~n/e lali 2 k<-n~lln(n/I) ak 2(t-q)/,)-l/2 

(ii) There are constants Cl, c2 > 0 so that we have for  all sequences 1 = 

al > a2 > . . .  >a, ,  > 0  

1 II a II1 VOln- l(e¢(Bg, l)) 1 II a II1 
C l - -  II ~ I1,, --  < _- < c2 II ~ IIM 

n II a ]12 voln_l(aBanA) n II a 112 

where M is associated to a. 

I f  we put ai ffi i q/p- 1 we get as an immediate consequence the following 

corollary. 

COROLLARY 2.2. L e t t e R  ~, II ~ 112 = 1. 
(i) 2 < p  <oo ,  

Cp -In-I/'' II ~ II< = < vol~_l(Pe(B;, i))< -- Cp n-lIp' II ~ ll<- 
vo1. _ l(OBg, l ) 

(ii)  l < q < p /2  < o% 

Cp-~ 1 ln(n)I"-q)/Pn(q-P)/P tl ~ IIp/Cp-q) < 
voln - l( P{( B~,q ) ) 

vol~ _ l(OW;,q ) 

< Cp,q n~q-p)/p II ~ II,,~,-#). 

(iii) max(l, p/2) < q _-< p < oo, 

1 voln ~(Pg(B~,q)) < Cp,q 1 
n ~ " c7'~ ~ < vol._l(OB;,q) x /~  

Corollary 2.2 shows in particular that the projection bodies of  the unit  balls 
of  l~ are equivalent to the Euclidean spheres. We have better estimates for 1~. 

REMARK 2.3. 
(i) l <=p<=n, 

_1 x//- ~ < vol~_l(OB~) __<cx/~ 
c ffi voln _ ,(B~-I) 

where c is a universal constant. 
(ii) Let M be an Orlicz function that satisfies a A2-condition. Then we have 
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~ x / ~  =< vol,,_t(OBb) < c x / ~  

vo1. _ l(B~t- l ) -- 

where c depends only on the constant appearing in the A2-condition. 

To show the fight-hand inequality of  Remark 2.30) we estimate 

vOln_l(OB~)=2 fn;_Xln-P( i~  Ixil2p-2)U2dx 

with x~ = (1 - Z~y~l[xi ]P)vp. The left-hand inequality follows from 

f .;-, ' f(x)12dlz(X) <-- ( f .;-, ' f (x) l  dlz(X)) 2~3( f n;_ , I f(x)14d#(x)) '/3 

with f (x)  = x~-P(Zr_~ I x~ [2p-2)~/2 and # the normalized Lebesgue measure. 
In order to prove part (ii) of  Remark 2.3 we have to use inequalities of  the 

type 
M(Ot) < OYM(t). 

This inequality is true provided M satisfies a Az-condition. Besides this, the 
arguments are the same as for Theorem 2.1. 

LEMMA 2.4 [HLP pp. 45-49]. Let Xl>=Xz>=...>=x,>=O and y~>= 
Y2 >-- " ' "  >-- Y, >-- 0 such that 

n n 

y~x,=Y~y,, 
i - - I  i - I  

k k k = l , . . . , n ,  
X x~>_- X y,, 

i - 1  i - - I  

then there are numbers dr > 0 with Zr d, = 1 and permutations xr so that 

YK ~- ~ drx=,(k), k = 1 , . . . ,  n. 
r 

LEMMA 2.5. 

II ~ I1~ = II ,s II~ = 1 and 

~li/qi+l < ~/~+,,  

Then we have for all z ~_R" 

Ave( 
i - 1  

Let ~ = > ~2 -- > • • • = > ~. > 0 and rh = > q2 ffi > "'" = > ~l. > 0 with 

i - - 1  . . . .  , n - 1 .  

 AVO( .I ,2),2 2) 
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PROOF. We put x~ ---- ~2 and y~ -- r/2 for i ffi 1 , . . . ,  n. Now we verify that the 

hypothesis of  Lemma 2.4 is satisfied. Since T/~/~/~+~ < ~/~+~ there must be 

/Co E N so that 

Clearly it follows that 

r/~ < ~ for i  = 1 , . . . ,  ko, 

r/~ > ~ f o r / = k o +  1, . . . .  n. 

k k 
Y, t / 7 -  -< 2 ~] f o r k =  1 . . . .  ,ko, 

i - - I  i - I  

2 
iffik i -k  

f o r k = k o +  1 , . . . , n .  

Since we assume that Zr-~ ~2 __ ~ n  1 ~/2 we get'also for k -- k0 + 1 , . . . ,  n 

k k 

i--I i--1 

Therefore we can apply Lemma 2.4. There are numbers d, > 0 with Z, d, = 1 

and permutations a, so that 

, r 

Therefore we get by using the inverse triangle inequality for p -- ½ 

~-~{Avze(~r dri~l [z1t(i)~.,(i)[2)lf2) 2 

[] 

LEMMA 2.6. (i) Let  1 < q < oo and  1 = al > a2 ~ . . .  >~ a. > 0 such that 

z k - i  ai <--_ Ckakfor all k = 1 . . . . .  n. Then we have for  all k ,  1 < k <-_ n /e  and  all 

a > 0  

fOB i < n/in(n/k) 

¢l 
: ,  I maxk (x)  I"dlz (x)  < Ca,q vol, _ l(OB~,q ) ~ e~ 

where c.,q does not depend on the dimension n. 
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(ii) Let  1 < q < ~ and 1 = a~ > a2 >= • • • ~ a. > 0 such that zk_t a~ < c k a  k 

for  all k ffi 1 . . . .  , n. Then there is a constant d = d(a, q, c) so that 

:, Imaxt.zal(x)l"dg(x) > vol._l(OBg,q) e~ 
B"a,q i ffi 1 

One can actually prove that (ii) holds for a space with a symmetric basis. In 
order to show Lemma 2.6 we need the following lemma. 

LEMMA 2.7. Let 1 < q < oo and 1 = a~ > a2 > • • • > an > 0 SO that 

Zk-l ai < dkak, k = 1 . . . . .  n. Then we have for all r, 1 < r < n, 

> 2 _ k  (n-l)/qvOln_l(OBna,¢) ( i ' v o l " - ' { x E O B ~ ' q l m a x k ( X ' = - ~ } < ( k )  l dr 

> 1 
(ii) voln_l{XEOB~,q l m a x k ( x ) = - ~ r ) } = O  f o r k > r .  

PROOF. (ii) is obvious. We use that 2(r) < 2(r + 1). 
We show (i). We prove first that 

B~,q f) {xER" I x , , . . .  ,Xk >= 2/2(r)} 
(2.2) 

1 k X1, > 1 C. 1 - k  l/qBn, q ~ ( r )  i ~ e i ) O { x E R n  I . . . .  X k = - ~ } .  

We have for x in the left-hand set of (2.2) 

1 1 
- - - > -  i = 1  . . . .  k. 

xi 2 ( r ) - g ( r )  ' 

Since II x Ila,q ~ 1 we also have that 

( 1 , ) 
= xl 2 ( r ) ' ' ' ' ' X k  2 ( r ) ' X k + ] ' ' ' ' ' X "  

for 1 < k < r, 

(2.3) ~i*= x j -  l/2(r), j = 1 , . . . ,  k. 

Indeed, if one of those coordinates would not be among the r greatest then 

satisfies II ~ Ha.q --< 1. We claim that the first k coordinates o f~  are among the r 
greatest coordinates of  ~, i.e. if  £* denotes the decreasing rearrangement of  
there is a set I = {i~ . . . . .  ik} C_ {1 . . . . .  r )  SO that 
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more than r coordinates o f £  are greater.than 1/2(r) which contradicts the fact 

that II ~ Ila,¢ --<--- 1. Therefore we get 

Thus we get 

1 ~ ~ a, lx*lq~ ~. a,l:g*l q + Y. a,l~* + 1/;t(r)l ~ 
i --  1 i ~ l  i ~ l  

~ ai[.£*l q --k ~ a,l.£i*l q + ~ ai l/2(r)l q. 
i~-I i E l  i ~ l  

1-Za~ll /2(r)lq>= ~ a, l x*:  
i E !  i --  l 

or 

e, = II X II,.a < 1 < 1 - 

Now we show that (2.2) implies Lemma 2.7(i). (2.2) implies that we have for all 

signs e ~ , . . . ,  ~k 

B~.q N {xER" [e lx l , . . . ,  ekXk > 2/2(r)} 

c_ 1 -  7 B g , q  ,- ,e 'e '  n { x ~ R n l e , x ,  . . . .  ,ekXk>=l/A(r)} 

or, after a shift by (1/2(r))Y.k_l eiei, 

B~"q N ( x E R  n l e t x l , . . . ,  ekXk > 1/2(r)} 
2(r) i 

k I/q 
__¢_ l-~r ~,, n(x~R ~ le, x, ..... ~,xk>o} 

and therefore 

"'~ X(r).- ~' n { x ~ R  n le , x , , . . . , ekxk~o)  

(2.4) 

Since 12,q has a 1-unconditional basis we have that 
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{ ( ' ) , )  } B n  - a,q ~-~. e, ei N { x E R " [ e ,  X t , . . . , e k X k > O }  

is a convex set that is contained in [ 1 - k /dr  l/qRn Thus we get u a ,  q • 

0{y {,(  ) }} a,q ~.(r) - e;ei N { x ~ R  n [ e l X l , . . .  , e, kX k ~ O) 

< [ 1 - k /dr  ](" -l)/q vol,_ ~(OB~,q). 

This implies 

v o l n _ l { X E O B ~ , q  [ maxk(x) > 2/2(r)} <= (nk) [ l - k/dr [(n-l)/evoln-t(OB~.q). I-1 

PROOF OF LEMMA 2.6. (i) We show the inequality for k with 1 < k < n/e .  

We fix k and rk with k <-_ r k -<_ n. We specify later what we choose for rk. By 
(p,) <--_ (en/k)  ~ and Lemma 2.7 we get 

- l r [ maxk(x) [~d/~ (x) voln l(OBn q ) 
,3o 

-- vol,_ , --1 f ~  ~(OBa,q) VOI,_~{ I maxk(X)l a >_-- t }dt  
.)0 

,l (:)l ,~,(rk) - ~  -]- ~,, 2"2( r )  - "  1 
r - k  

k 1) (~-,)/q 
d(r + 

( k )  k ' : l  ( ( n -  1)k] 
< 2(rk)-a + 2~ ,-k~" ;~(r) -~ exp q-d(r-b 1)]" 

Because 2(rk) ~ 2(rk/r)2(r) for r ~ rk we get 

< 2a~,(rk) -a i1 + 
= , -k  qd(r + 1)/J 

Now we choose rk ffi c'n/In(n/k) and observe that, ffk _-< n/e and k <-_ c'n, 
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( n -  1)k 1 ( n -  1)kln(n/k) 1 [n~ 
>- - -  > ~ k i n  . 

qd(r + 1) - qd c'n = 2qdc' 

Therefore, if we choose c' sufficiently small, i.e. 

1 
- - > 4 + a l n 2 + a ,  
2qdc' - 

we obtain 

v°l'-l(cgB~'q)-I Ja Imaxk lad#(x) 

<2aA(rk)-* 1 +  ~ exp - 2 k i n  
r-k 

<2~2(rk)-*{l+C'ln(n/k----~)(k) -2k} 

C"2(rk)-~ 

where c" depends on q, d, and a but not on n. 
(ii) We show that 

(2.5) #{x EOB2.q I maxt,,d~(X) >_--A(n)-'} >= d -1 

from which (ii) follows immediately. We have 

voln_,(0Bg,,) ffi fob II x L,~d~(x) 

<= ( .fOB:. k~l ak l maxk(X ) l'dg) I'¢ 
< ~ \11q 

By (i) the first summand  is less than 
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(2.6) ln(n/k) 1 ll/q 
<___ cq vol._t(OBg.q) ~ ak ~ 

k <n/d n aln/ln(n/k)]/ 

By the hypothesis zk_l ai < C k a k ,  k = 1 , . . . ,  n, we get that ak <= ½DaDk, k < 
n/D i fD >___ 2 exp(2c 2) (compare [Sch02], Lemma 4.7). By this and by choosing 
d large enough the last expression can be bound by ½ vol~_ l(OB~,q). Please note 
that d only depends on c and q. We get 

(2.7) ½v°l~-l(OB~q)--< ( ~ ak :o Imaxk(X)lqdlt) .'¢" 
' k > nld B~,q 

From this and Lemma 2.7(ii) the inequality (2.5) follows with a new constant d 
that depends only on c and q. [] 

PROOF OF THEOREM 2.1. As in the proof of Theorem I. I we obtain 

vol._,(P¢(B~,q)) = ~ .~ aB t, • \,-, 

(2.9) implies 

For all y ~ R  n, y~ > y2> • • • > yn > 0 we have 

(2.9) N(y)--  Zr-llajlYilq-ll2) l/~ i-l" 

N(y)(i) > ai 
N(y)(i + 1)- a;+~ 

W e  can apply Lemma 2.5 to N(y) and a~ II a [[2. We get 

(n voln_l(P¢(B~q))<½]la[lf 1 f Ave ~ I~x(i)ail2)l/2dlt(y). 
J 8~,e  g i 1 

We apply Lemma 1.6 and obtain the fight-hand inequality of Theorem 2.1. 
Now we prove the left-hand inequality. We want to apply Lemma 1.5. It 
suffices to get estimates from below for 

(2.8) 
< x/~ vol (P~(B~)) n - -  I , q  • 
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voln_,(OB~'q)-' ~ max,(N(y))dlz(y) 

ai(maxi(y)) q-~ 
= vol"-'(OB2'q)-' .J OB:. (k~= [ak(maxk(y))¢_t l2) '/2 dlz(Y) 

> (v°l"-'(OBg'q)-lfos.,[ai(maxi(Y))q-t[':2dl't(Y)) 2 

vol._t(OB,,q)-' ~B. (k~ 12) 'n d/z(y) 

By Lemma 2.6 we get for 1 < i < n/d 

a ,A(n)  1-¢ 

>c,(~ 12 ) l ak I A([n/ln(n/k)])l 2-2q\ 
1/2 o 

k /e 

Since A(k) = (Zik_t ai) l/q w e  get 

vol._[(0B~,q) - ~ faB',, max~(N(y))dlz(y) 

a, ( k~_ l ak) ¢'-q)/q 
I • 

~__Cq (k<~n/e ]ak ]2(l<n/in~(n/k) a)(2_2q)/q)i/2 
(ii) is easier to prove since N(y) = a~ II a ]]2. [] 

3. Successive quotients of quermassintegrals 

Let Cbe a convex body. We denote by W~(C), i = O . . . . .  n, the querrnass- 
integrals [Had]. The Aleksandrov-Fenchel inequalities assure that the 
sequence of successive quotients of quermassintegrals is monotone. We show 
here that for certain convex bodies it is essentially constant (Corollary 3.4). 

The following proposition is a combination of two known results. 

PROPOSITION 3.1. Let E be the R ~ equipped with a norm [I liE. Then we 
have 

n 
vol~(BD ~/" 

iq(BE) 

Wo(B~) < . . .  ___< W~_~(BE) 
= Z o .  II x II~,do'(x). 
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].,EMMA 3.2 (Aleksandrov-Fenchel) [Had, p. 202]. 
K C R ~ we have 

W~(K) 2> W~+t(K)Wi_~(K), i =  1, . . . .  n - 1. 

LEMMA 3.3 [Had, p. 212]. For all convex bodies K C R", n > 1, we have 

_,(K) = ½ vol.(~.) ~._ b(K, x )da(x )  w .  
i t  

where 

b(K, x) = inf{t I (x ,  u)  <-_ t for  all u ~ K }  - sup{t I (x ,  u)  > t for  all u ~ K } .  

PROOF OF PROPOSITION 3.1. Since 
(1/n)vol,  _ I(OBE) we get 

For all convex bodies 

Wo(BE) vol,(Be) VOI.(BE) TM 
~ ~ n  .~--n 
WI(BE) voln-I(OBE) iq(BE) 

The right-hand equality follows from Lemma 3.3 and the observation that 
b(Be, x) = 2 II x lie*. The rest follows from Lemma 3.2. [] 

COROLLARY 3.4. Let  max(l, p/2) < q < p < oo. Then we have 

n 

Wo(B;..  ) W .  _ ,(B;,~ ) < c . . n  ''~- "" 1 n t a -  lip <= ~ . . .  < = 

cp,q w ~ ( B ; , , )  W . ( B ; ,  D " " 

PROOF. The left-hand inequality follows from Proposition 3.1, Corollary 
2.2(iii) and Lemma 1.2 in [SchOd. Since we have II x II,,¢ >-- II x II, we get by 
dualization 

L (L " 
W~_t(B~,,) < IIx II, ,da(x) ~ IIx I I# :da(x ) )  

-~. (n :ol~ ,xl [P'da(x)) llp' <-~ Cpn ll2-11p. [] 

REMARK 3.5. 

(i) [Had, p. 216] Wi(B~) = 2"-ivoIi(f~i), i = 1 . . . . .  n. 

(ii) Wo(Bf) = (1 /V/~  )WI(B~). 

(iii) (1 /c )~T~n) /n  < W._t(Br)/W~(Bf)  < c l ~ ) / n  

PROOF. (ii) We have 

Wo(Bz) = vOI.(BE) and W~(BE) = 
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2" 1 2nx/~ 
W o ( B ~ )  = vol~(B~) = - -  and W I ( B ~ )  = - vol~_ , ( O B ~ )  = 

n[ n n! 

(iii) By Proposition 3.1 we have 

Wn_~(BO :oa wn(no = . II x l i e  da(x). 

A lower bound for this integral was given in [FLM]. The same method gives 
also an upper bound. Also, I.emma 2.6 gives the upper bound. [] 
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